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Abstract :  This paper is to study the stability of equilibrium position of the centre of mass of two satellites connected 

by an extensible string under the influence of air resistance and the shadow of the oblate earth due to solar pressure in 

the central gravitational field of the earth in circular orbit. We have obtained an equilibrium position and has been 

shown to be stable in the sense of Liapunov. 
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I. Introduction 

The present paper is devoted to examine the stability of an equilibrium point of the centre of mass of the 

system of two satellites connected by an extensible string which is supposed to be light and flexible under 

the influence of perturbative forces mentioned in the Abstract in case of circular orbit. By exploiting 

Lagrange’s equations of motion of first kind, we have derived differential equations of motion of one of the 

two satellites when their centre of mass is moving along a keplrian orbit in Nechvill’s coordinate system. 

The general solution of the differential equations obtained are beyond our reach. Hence in order to facilitate 

our problem, we put e=0 and so  = 1 and  = 0. Then we get the equations of motion in circular orbit for 

the centre of mass of the system. Then Jacobi’s integral for the problem in case of two dimensional motion 

has been obtained. After that we get an equilibrium position of the centre of mass of the system and has 

been found to be stable in the sense of Liapunov him. 

 

II. Equations of motion of the system in Elliptic orbit in Nechvill’s Coordinate System. 

 The equations of motion of one of the two satellites with respect to the centre of mass in Nechvill’s 

coordinate system in elliptic orbit have been obtained in  the form: 
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 V being true anamaly of the orbit of the centre of mass of the system. 

  0 Natural length of the string connecting the two satellites of masses m1 and m2 

Here dashes denotes differentiations with respect to true anomaly v 

The condition of constraint is given by 
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Putting =1 and 1=0 for e=0 in (1), we get two dimensional equations of motion in the form. 
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Where  r = 22 yx 
 

The condition of constant given by (2) takes the form: 

  2

0

22  yx           

The periodic terms in (3) can be averaged by the following relations: 
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Where  is taken to be constant 

Thus, using (4) the system of equations of motion (3) becomes 
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We find that the equations of motion given by (5) do not contain time t explicitly. Hence, there must 

exist Jacobi’s integral for the problem. 

Multiplying the first equation of (5) by 2x1 and the second equation of (5) by 2y1 and adding them 

together and then integrating, we get Jacobi’s integral in the form. 
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Where h is the constant of integration 

 

III. Equilibrium position of the system: 

 We have derived the system of equations (5) for the motion of the system in rotating frame of 

reference. It has been assumed that the system is moving with effective constraints and the connecting cable 

of the two satellites will always remain tight. 

 The equilibrium positions of the system are given by the constant values of the co-ordinates in the 

rotating frame of reference. 

 Let x = x0 and y=y0 give the equilibrium position where x0 and y0 are constants 

 Hence, x’=0=x” and y’=0=y” 

Thus, equations given by (5) take the form: 
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 We find that it is very difficult to get the solution of equations of motion (7) in its present form. 

Hence, we put  = 900 and so the sun rays are assumed to be in the direction perpendicular to the line of 

perigee of the circular orbit of the centre of mass of the system. 

 Hence on putting  = 900  in (7), we get  
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From 8, we get the equilibrium point as 
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 It can be easily seen that the equilibrium position  (9)  gives a meaningful value of Hook’s modulus 

of elasticity if 
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IV. Stability of the equilibrium point of the system 

 We examine the stability of the equilibrium point given by (9) of the system in the sense of 

Liapunov.  
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 For this, 

  Let a = x = 0 and 
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 Let 1 and 2 be the small variations in x0 and y0 respectively. For the given position of equilibrium 

(o, b) given by (9). We have  
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Putting =900 in equations (5) and using (10), we get 
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Where  22
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Multiplying the first equation of (11) by 21’ and the 2nd equation of (11) by 2(b+2)’ respectively 

and adding these together and then integrating, we get Jacobi’s integral for the problem in the form. 
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Where h is the constant of integration. 

 To examine the stability of the equilibrium point in the sense of Liapunov, we take Jacobi integral 

given by (12) as Liapunov’s function v (1’, 2’, 1, 2) and is obtained expanding the terms of (12) as 
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 Where O(3) stands for third and higher order terms in 1 and 2 By Liapunov’s  theorem on 

stability, it follows that the only criterion for given equilibrium position (0, b) given by (9) to be stable is the 
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v defined by (13) must be positive definite and for this the following three conditions must be satisfied:
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We have from (9) the y – coordinate of the equilibrium point 

   

0

cos sinA
f

b












 

               

     

------------ (15)

  

We also have 

  

cos sin 0A f           ------------ (16) 

Using (15) in condition (i) of (14), we find that the  

 Condition (i) of (14) is satisfied. 

 Since b is positive so B is also positive 

Hence condition (iii) of (14) is also satisfied. 

 Condition (ii) of 14 and (iii) can be seen as 
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 Hence all the three condition of (14) are satisfied if 
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Thus, equilibrium point given by (9) is stable in the sense of Liapunove if 
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